جدول دوره های آموزشی

آدرس اموزشگاه

Broaching H

Broaching Machine

Broaching is a machining process that uses a toothed tool, called a broach, to remove material. There are two main types of broaching:linear and rotary. In linear broaching, which is the more common process, the broach is run linearly against a surface of the workpiece to effect the cut. Linear broaches are used in a broaching machine, which is also sometimes shortened to broach. In rotary broaching, the broach is rotated and pressed into the workpiece to cut an axis symmetric shape. A rotary broach is used in a lathe or screw machine. In both processes the cut is performed in one pass of the broach, which makes it very efficient.

Broaching is used when precision machining is required, especially for odd shapes. Commonly machined surfaces include circular and non-circular holes, splines, keyways, and flat surfaces. Typical workpieces include small to medium sized castings, forgings, screw machine parts, and stampings. Even though broaches can be expensive, broaching is usually favored over other processes when used for high-quantity production runs.

Broaches are shaped similar to a saw, except the height of the teeth increases over the length of the tool. Moreover, the broach contains three distinct sections: one for roughing, another for semi-finishing, and the final one for finishing. Broaching is an unusual machining process because it has the feed built into the tool. The profile of the machined surface is always the inverse of the profile of the broach. The rise per tooth (RPT), also known as the step or feed per tooth, determines the amount of material removed and the size of the chip. The broach can be moved relative to the workpiece or vice-versa. Because all of the features are built into the broach no complex motion or skilled labor is required to use it. A broach is effectively a collection of single-point cutting tools arrayed in sequence, cutting one after the other; its cut is analogous to multiple passes of a shaper.

Broaching Machine1

Process

The process depends on the type of broaching being performed. Surface broaching is very simple as either the workpiece is moved against a stationary surface broach, or the workpiece is held stationary while the broach is moved against it.

Internal broaching is more involved. The process begins by clamping the workpiece into a special holding fixture, called a workholder, which mounts in the broaching machine. The broaching machine elevator, which is the part of the machine that moves the broach above the workholder, then lowers the broach through the workpiece. Once through, the broaching machine's puller, essentially a hook, grabs the pilot of the broach. The elevator then releases the top of the pilot and the puller pulls the broach through the workpiece completely. The workpiece is then removed from the machine and the broach is raised back up to reengage with the elevator. The broach usually only moves linearly, but sometimes it is also rotated to create a spiral spline or gun-barrel rifling.

Cutting fluids are used for three reasons;

to cool the workpiece and broach

to lubricate cutting surfaces

to flush the chips from the teeth.

Fortified petroleum cutting fluids are the most common, however heavy duty water soluble cutting fluids are being used because of their superior cooling, cleanliness, and non-flammability.

Broaching Machine2

Usage

Broaching was originally developed for machining internal keyways. However, it was soon discovered that broaching is very useful for machining other surfaces and shapes for high volume workpieces. Because each broach is specialized to cut just one shape either the broach must be specially designed for the geometry of the workpiece or the workpiece must be designed around a standard broach geometry. A customized broach is usually only viable with high volume workpieces, because the broach can cost US$15,000 to US$30,000 to produce.

Broaching speeds vary from 20 to 120 surface feet per minute (SFPM). This results in a complete cycle time of 5 to 30 seconds. Most of the time is consumed by the return stroke, broach handling, and workpiece loading and unloading.

The only limitations on broaching are that there are no obstructions over the length of the surface to be machined, the geometry to be cut does not have curves in multiple planes, and that the workpiece is strong enough to withstand the forces involved. Specifically for internal broaching a hole must first exist in the workpiece so the broach can enter. Also, there are limits on the size of internal cuts. Common internal holes can range from 0.125 to 6 in (3.2 to 152.4 mm) in diameter but it is possible to achieve a range of 0.05 to 13 in (1.3 to 330.2 mm). Surface broaches' range is usually 0.075 to 10 in (1.9 to 254.0 mm), although the feasible range is 0.02 to 20 in (0.51 to 508.00 mm).

Tolerances are usually ±0.002 in (±0.05 mm), but in precise applications a tolerance of ±0.0005 in (±0.01 mm) can be held. Surface finishes are usually between 16 and 63 microinches (μin), but can range from 8 to 125 μin. There may be minimal burrs on the exit side of the cut.

Broaching works best on softer materials, such as brass, bronze, copper alloys, aluminium, graphite, hard rubbers, wood, composites, and plastic. However, it still has a good machinability rating on mild steels and free machining steels. When broaching, the machinability rating is closely related to the hardness of the material. For steels the ideal hardness range is between 16 and 24 Rockwell C (HRC); a hardness greater than HRC 35 will dull the broach quickly. Broaching is more difficult on harder materials, stainless steel and titanium, but is still possible.

Broaching Machine3

Broaching Machines

Broaching machines are relatively simple as they only have to move the broach in a linear motion at a predetermined speed and provide a means for handling the broach automatically. Most machines are hydraulic, but a few specialty machines are mechanically driven. The machines are distinguished by whether their motion is horizontal or vertical. The choice of machine is primarily dictated by the stroke required. Vertical broaching machines rarely have a stroke longer than 60 in (1.5 m).

Vertical broaching machines can be designed for push broaching, pull-down broaching, pull-up broaching, or surface broaching. Push broaching machines are similar to an arbor press with a guided ram; typical capacities are 5 to 50 tons. The two ram pull-down machine is the most common type of broaching machine. This style machine has the rams under the table. Pull-up machines have the ram above the table; they usually have more than one ram. Most surface broaching is done on a vertical machine.

Horizontal broaching machines are designed for pull broaching, surface broaching, continuous broaching, and rotary broaching. Pull style machines are basically vertical machines laid on the side with a longer stroke. Surface style machines hold the broach stationary while the workpieces are clamped into fixtures that are mounted on a conveyor system. Continuous style machines are similar to the surface style machines except adapted for internal broaching.

Horizontal machines used to be much more common than vertical machines, however today they represent just 10% of all broaching machines purchased. Vertical machines are more popular because they take up less space.

Broaching is often impossible without the specific broaching or keyway machines unless you have a system that can be used in conjunction with a modern machining centre or driven tooling lathe; these extra bits of equipment open up the possibility of producing keyways, splines and torx through one-hit machining.

دوره های اموزشی

شبکه های اجتماعی

                   
    تهران-ضلع غربی مترو نواب-برج سهیل-واحد604  
  
پارس اتوماسیون - پارس اتوماسیون - youtube پارس اتوماسیون - FACEBOOK twiter پارس اتوماسیون - instagram