لیست دوره ها

EDM Machine H

Electric Discharge Machining (EDM)

sometimes colloquially also referred to as spark machining, spark eroding, burning, die sinking, wire burning or wire erosion, is a manufacturing process whereby a desired shape is obtained using electrical discharges (sparks). Material is removed from the workpiece by a series of rapidly recurring current discharges between two electrodes, separated by a dielectric liquid and subject to an electric voltage. One of the electrodes is called the tool-electrode, or simply the "tool" or "electrode", while the other is called the workpiece-electrode, or "workpiece".

When the distance between the two electrodes is reduced, the intensity of the electric field in the volume between the electrodes becomes greater than the strength of the dielectric (at least in some point(s)), which breaks, allowing current to flow between the two electrodes. This phenomenon is the same as the breakdown of a capacitor (condenser) (see also breakdown voltage). As a result, material is removed from both electrodes. Once the current stops (or is stopped, depending on the type of generator), new liquid dielectric is usually conveyed into the inter-electrode volume, enabling the solid particles (debris) to be carried away and the insulating properties of the dielectric to be restored. Adding new liquid dielectric in the inter-electrode volume is commonly referred to as "flushing". Also, after a current flow, the difference of potential between the electrodes is restored to what it was before the breakdown, so that a new liquid dielectric breakdown can occur.

EDM Machine1

Die-Sink EDM

Two Russian scientists, B. R. Lazarenko and N. I. Lazarenko, were tasked in 1943 to investigate ways of preventing the erosion of tungsten electrical contacts due to sparking. They failed in this task but found that the erosion was more precisely controlled if the electrodes were immersed in a dielectric fluid. This led them to invent an EDM machine used for working difficult-to-machine materials such as tungsten. The Lazarenkos' machine is known as an R-C-type machine, after the RC circuit used to charge the electrodes.

Simultaneously but independently, an American team, Harold Stark, Victor Harding, and Jack Beaver, developed an EDM machine for removing broken drills and taps from aluminium castings. Initially constructing their machines from feeble electric-etching tools, they were not very successful. But more powerful sparking units, combined with automatic spark repetition and fluid replacement with an electromagnetic interrupter arrangement produced practical machines. Stark, Harding, and Beaver's machines were able to produce 60 sparks per second. Later machines based on their design used vacuum tube circuits that were able to produce thousands of sparks per second, significantly increasing the speed of cutting.

EDM Machine2

Wire-Cut EDM

The wire-cut type of machine arose in the 1960s for the purpose of making tools (dies) from hardened steel. The tool electrode in wire EDM is simply a wire. To avoid the erosion of material from the wire causing it to break, the wire is wound between two spools so that the active part of the wire is constantly changing. The earliest numerical controlled(NC) machines were conversions of punched-tape vertical milling machines. The first commercially available NC machine built as a wire-cut EDM machine was manufactured in the USSR in 1967. Machines that could optically follow lines on a master drawing were developed by David H. Dulebohn's group in the 1960s at Andrew Engineering Company for milling and grinding machines. Master drawings were later produced by computer numerical controlled (CNC) plotters for greater accuracy. A wire-cut EDM machine using the CNC drawing plotter and optical line follower techniques was produced in 1974. Dulebohn later used the same plotter CNC program to directly control the EDM machine, and the first CNC EDM machine was produced in 1976.

Generalities

Electrical discharge machining is a machining method primarily used for hard metals or those that would be very difficult to machine with traditional techniques. EDM typically works with materials that are electrically conductive, although methods for machining insulating ceramics with EDM have also been proposed. EDM can cut intricate contours or cavities in pre-hardened steel without the need for heat treatment to soften and re-harden them. This method can be used with any other metal or metal alloy such as titanium,hastelloy, kovar, and inconel. Also, applications of this process to shape polycrystalline diamond tools have been reported.

EDM is often included in the "non-traditional" or "non-conventional" group of machining methods together with processes such as electrochemical machining (ECM), water jet cutting (WJ, AWJ), laser cutting and opposite to the "conventional" group (turning, milling, grinding, drilling and any other process whose material removal mechanism is essentially based on mechanical forces).

Ideally, EDM can be seen as a series of breakdown and restoration of the liquid dielectric in-between the electrodes. However, caution should be exerted in considering such a statement because it is an idealized model of the process, introduced to describe the fundamental ideas underlying the process. Yet, any practical application involves many aspects that may also need to be considered. For instance, the removal of the debris from the inter-electrode volume is likely to be always partial. Thus the electrical proprieties of the dielectric in the inter-electrodes volume can be different from their nominal values and can even vary with time. The inter-electrode distance, often also referred to as spark-gap, is the end result of the control algorithms of the specific machine used. The control of such a distance appears logically to be central to this process. Also, not all of the current between the dielectric is of the ideal type described above: the spark-gap can be short-circuited by the debris. The control system of the electrode may fail to react quickly enough to prevent the two electrodes (tool and workpiece) from coming into contact, with a consequent short circuit. This is unwanted because a short circuit contributes to material removal differently from the ideal case. The flushing action can be inadequate to restore the insulating properties of the dielectric so that the current always happens in the point of the inter-electrode volume (this is referred to as arcing), with a consequent unwanted change of shape (damage) of the tool-electrode and workpiece. Ultimately, a description of this process in a suitable way for the specific purpose at hand is what makes the EDM area such a rich field for further investigation and research.

To obtain a specific geometry, the EDM tool is guided along the desired path very close to the work; ideally it should not touch the workpiece, although in reality this may happen due to the performance of the specific motion control in use. In this way, a large number of current discharges (colloquially also called sparks) happen, each contributing to the removal of material from both tool and workpiece, where small craters are formed. The size of the craters is a function of the technological parameters set for the specific job at hand. They can be with typical dimensions ranging from the nanoscale (in micro-EDM operations) to some hundreds of micrometers in roughing conditions.

The presence of these small craters on the tool results in the gradual erosion of the electrode. This erosion of the tool-electrode is also referred to as wear. Strategies are needed to counteract the detrimental effect of the wear on the geometry of the workpiece. One possibility is that of continuously replacing the tool-electrode during a machining operation. This is what happens if a continuously replaced wire is used as electrode. In this case, the correspondent EDM process is also called wire EDM. The tool-electrode can also be used in such a way that only a small portion of it is actually engaged in the machining process and this portion is changed on a regular basis. This is, for instance, the case when using a rotating disk as a tool-electrode. The corresponding process is often also referred to as EDM grinding.

A further strategy consists in using a set of electrodes with different sizes and shapes during the same EDM operation. This is often referred to as multiple electrode strategy, and is most common when the tool electrode replicates in negative the wanted shape and is advanced towards the blank along a single direction, usually the vertical direction (i.e. z-axis). This resembles the sink of the tool into the dielectric liquid in which the workpiece is immersed, so, not surprisingly, it is often referred to as die-sinking EDM (also called conventional EDM and ram EDM). The corresponding machines are often called sinker EDM. Usually, the electrodes of this type have quite complex forms. If the final geometry is obtained using a usually simple-shaped electrode which is moved along several directions and is possibly also subject to rotations, often the term EDM milling is used.

In any case, the severity of the wear is strictly dependent on the technological parameters used in the operation (for instance: polarity, maximum current, open circuit voltage). For example, in micro-EDM, also known as μ-EDM, these parameters are usually set at values which generates severe wear. Therefore, wear is a major problem in that area.

The problem of wear to graphite electrodes is being addressed. In one approach, a digital generator, controllable within milliseconds, reverses polarity as electro-erosion takes place. That produces an effect similar to electroplating that continuously deposits the eroded graphite back on the electrode. In another method, a so-called "Zero Wear" circuit reduces how often the discharge starts and stops, keeping it on for as long a time as possible.

EDM Machine3

Applications

Prototype production

The EDM process is most widely used by the mold-making tool and die industries, but is becoming a common method of making prototype and production parts, especially in the aerospace, automobile and electronics industries in which production quantities are relatively low. In sinker EDM, a graphite, copper tungsten or pure copper electrode is machined into the desired (negative) shape and fed into the workpiece on the end of a vertical ram.

Coinage die making

For the creation of dies for producing jewelry and badges, or blanking and piercing (through use of a pancake die) by the coinage (stamping) process, the positive master may be made from sterling silver, since (with appropriate machine settings) the master is significantly eroded and is used only once. The resultant negative die is then hardened and used in a drop hammer to produce stamped flats from cutout sheet blanks of bronze, silver, or low proof gold alloy. For badges these flats may be further shaped to a curved surface by another die. This type of EDM is usually performed submerged in an oil-based dielectric. The finished object may be further refined by hard (glass) or soft (paint) enameling and/or electroplated with pure gold or nickel. Softer materials such as silver may be hand engraved as a refinement.

EDM Machine4

Small hole drilling

Small hole drilling EDM is used in a variety of applications.

On wire-cut EDM machines, small hole drilling EDM is used to make a through hole in a workpiece in through which to thread the wire for the wire-cut EDM operation. A separate EDM head specifically for small hole drilling is mounted on a wire-cut machine and allows large hardened plates to have finished parts eroded from them as needed and without pre-drilling.

Small hole EDM is used to drill rows of holes into the leading and trailing edges of turbine blades used in jet engines. Gas flow through these small holes allows the engines to use higher temperatures than otherwise possible. The high-temperature, very hard, single crystal alloys employed in these blades makes conventional machining of these holes with high aspect ratio extremely difficult, if not impossible.

Small hole EDM is also used to create microscopic orifices for fuel system components, spinnerets for synthetic fibers such as rayon, and other applications.

There are also stand-alone small hole drilling EDM machines with an xy axis also known as a super drill or hole popper that can machine blind or through holes. EDM drills bore holes with a long brass or copper tube electrode that rotates in a chuck with a constant flow of distilled or deionized water flowing through the electrode as a flushing agent and dielectric. The electrode tubes operate like the wire in wire-cut EDM machines, having a spark gap and wear rate. Some small-hole drilling EDMs are able to drill through 100 mm of soft or through hardened steel in less than 10 seconds, averaging 50% to 80% wear rate. Holes of 0.3 mm to 6.1 mm can be achieved in this drilling operation. Brass electrodes are easier to machine but are not recommended for wire-cut operations due to eroded brass particles causing "brass on brass" wire breakage, therefore copper is recommended.

Metal Disintegration Machining

Several manufacturers produce MDM machines for the specific purpose of removing broken tools (drill bits, taps, bolts and studs) from work pieces. In this application, the process is termed "metal disintegration machining" or MDM. The metal disintegration process removes only the center out of the tap, bolt or stud leaving the hole intact and allowing a part to be reclaimed.

Closed loop manufacturing

Closed loop manufacturing can improve the accuracy and reduce the tool costs

SOCIAL NETWORK

                   
    تهران-ضلع غربی مترو نواب-برج سهیل-واحد604  
  
پارس اتوماسیون - پارس اتوماسیون - youtube پارس اتوماسیون - FACEBOOK twiter پارس اتوماسیون - instagram